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ABSTRACT

The numerical simulations of impulsively started flow, non-impulsively

started flow, sinusoidally-oscillating flow, and, finally, co-existing flow (with

mean and oscillatory comrponents) past a circular cylinder have been

investigated in great detail through the use of several compact schemes with

the Navier-Stokes vorticity/stream function formulation for various

Reynolds numbers, frequency parameters, and ambient flow/oscillating flow

combinations using VAX-3520 and NASA's Supercomputers. Extensive

sensitivity analysis has been performed to delineate the effects of time step,

outer boundary, nodal points on the cylinder, and the use of higher order

polynomials in the calculation of the gradient of wall vorticity. The results

have been compared with those obtained by others, whenever available, and

with those obtained experimentally. In many cases the predicted wake region,

vorticity and pressure distributions, and the time-variation of the force

coefficients have shown excellent agreement with those obtained

experimentally.
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I. INTRODUCTION

Numerical experimentation in fluid dynamics, through the use of finite-

difference, finite-element, and discrete-vortex methods, has attracted

considerable attention during the past two decades and produced laminar

flows difficult to measure and turbulent flows hard to verify and impossible

to generalize. The reasons for this are relatively simple. Numerical solutions

based on the full Navier-Stokes equations are not stable at high Reynolds

numbers and the instability is non-linearly related to the particular flow,

input parameters and the discretization conditions. Also, the real flow at the

computed Reynolds numbers may be turbulent, at least in some regions of

the flow, and the numerical experiment does not imitate the physical

experiment. Furthermore, the observed physical and numerical instabilities

do not necessarily correspond to each other. Assuming that the calculations

for a given flow are carried out at sufficiently small Reynolds numbers, where

the flow is known to remain stable and laminar, one quickly discovers that it

is practically impossible to measure, to any credible degree of accuracy, most

or all of the predicted quantities (except the Strouhal number and the

photographs of the flow patterns). One may also raise the question as to

whether the two-dimensional numerical calculations could or should ever be

compared with physical experiments attempting to mimic two

dimensionality through the use of various passive or active devices (e.g., end

plates on cylinders).

Evidently, one's view of the state of the numerical modelling depends to

a large extent on one's objectives. For example, if the objective is to obtain



some approximate answers and flow kinematics, one might be perfectly

satisfied with the existing codes. If the objective is to match the measured and

calculated results (e.g., lift and drag coefficients), one might achieve the

desired objective by fine tuning a number of model parameters (e.g., the order

of approximation of the velocity and/or vorticity gradients, particularly near

the wall, mesh size, time step, type of discretization, outer boundary, just to

name a few). If one's objectives are to perform numerical experiments for

sake of numerical experiments, with no concern with the compatibility of the

numerical and experimental results, then one can objectively asses the model

instead of attempting to attribute to it artificial powers of prediction.

As far as the turbulent flows are concerned, some or all of the predictions

of the numerical calculations for a given flow depend on the closure model

used. Some models do better than others for some flows and worse than

others for other flows. No model, however sophisticated, has a corner on the

numerical market. Among the numerous theoretical, numerical, and

experimental investigations, impulsively-started steady flow about a circular

cylinder has occupied a prominent place partly because of its intrinsic interest

towards the understanding of the evolution of separation, vortex formation,

growth, and partly because it provided the most fundamental case for the

comparison and validation of various numerical methods and codes. In

recent years, attention has turned to a broader class of relatively manageable

time-dependent flows about bluff bodies: Non-impulsively-started flows,

sinusoidally oscillating flows, co-existing flows (uniform flow plus oscillating

flow), flow from one steady state to another (at a lower or higher Reynolds

number through the use of prescribed changes in velocity), and so on. The

2



solution of these problems at sufficiently high Reynolds numbers will have

far reaching theoretical and practical consequences. As noted above, this is

not yet the case, and the solutions must necessarily be confined to cases where

the accurate prediction of physical experiments and the instant gratification

are not the real objectives. However, it is hoped that even the approximate

solutions will have enough information to elucidate the physics of the

phenomenon.

It is clear from the foregoing that the objectives of the present

investigation are to carry out extensive sensitivity analysis on a given code,

based on the very popular vorticity/stream-function formulation of the

Navier-Stokes equations, through the use of a circular cylinder immersed in

an impulsively-started flow, in a non-impulsively started flow, in a

sinusoidally-oscillating flow, and in a co-existing flow (current plus

sinusoidal oscillations). The expectations are that the results will point out

the strengths and weaknesses of the code, for the particular type of

formulation used, explain the reasons between the various numerical

predictions of the same problem, and, hopefully, shed some light on the

physics of flows heretofore uncalculated.
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II. BACKGROUND STUDIES

Numerous numerical experiments have been performed on flow about

circular cylinders in an attempt to predict the Strouhal number, the pressure

distribution, and the evolution of the lift and drag forces in impulsively-

started steady ambient flow. Here, only the more recent and relatively more

accurate examples will be described briefly. Ta Phuoc Loc (1980) solved the

complete unsteady Navier-Stokes equation in vorticity/stream-function form

using a combination of second and fourth-order compact finite-difference

schemes. He obtained short-time symmetric-wake solutions at Reynolds

numbers of 300, 550, and 1,000 and achieved good agreement with flow

visualization results for both vortex size and center position. His calculations

also showed clearly the small secondary vortices just behind the separation

points.

Lecointe and Piquet (1984) used several compact schemes with the

Navier-Stokes vorticity/stream function formulation to solve laminar flows

around circular cylinders up to a Reynolds number of 9500. They studied

both start-up and unsteady periodic phenomena. The predicted wake-region

shape showed good agreement with experimental flow visualizations. Ta

Phuoc Loc and Bouard (1985) performed calculations at Re = 3,000 and 9,500

using a fourth-order finite-difference technique to solve the Poisson equation

for the stream function and a second-order technique for the vorticity-

transport equation. They found good agreement between their predictions

and flow visualization. The calculations were confined, out of necessity, to

relatively short times during which the wake became neither asymmetrical

4



nor turbulent. Chamberlain (1987) used a second-order fast Poisson solver

based on FFT methods and found an accurate solution which agreed well

with the previous numerical and physical experiments. Rumsey (1988) used

an upwind-biased implicit approximate factorization algorithm to calculate

the impulsively-started unsteady flow over a circular cylinder at a Reynolds

number 1200 and a Mach number of 0.3. Rumsey's results were in very good

agreement with the previous calculations and showed, predictably enough,

only a slight compressibility effect.

All numerical calculations using finite-difference, finite-element, or

vortex-element methods (see e.g., Sarpkaya and Shoaff (1979), van der Vegt

(1988), Sarpkaya (1989), Chang and Chern (1990)) have assumed an

impulsively-started flow. No computational attempt was made to investigate

the effect of the initial acceleration, prior to the establishment of a steady

uniform flow, on the characteristics of the resulting time-dependent flow.

Several experimental investigations (Bouard and Coutanceau (1980),

Sarpkaya (1966), and Sarpkaya (1978)) of impulsively-started flow around

circular and rectangular cylinders have been carried out. Bouard and

Coutanceau (1980) investigated the shape and growth rate of the wake region

behind the cylinder for Reynolds number between 40 and 10,000. Sarpkaya

(1966, 1978) examined the evolution of the wake region and the development

of the lift and drag forces with time for cylinders between Reynolds numbers

of 15,000 and 120,000. Nagata et al. (1985) studied the start-up flow at Reynolds

numbers between 250 and 1200, with the majority of the experiments

performed at Re = 1200. They gave detailed results for the time-evolution of

the vortical region, boundary-layer parameters, and profile shapes at this

5



Reynolds number. Sarpkaya and Kline (1982) examined the impulsively-

started flow about four types of bluff bodies. Sarpkaya and Ihrig (1986)

performed experiments and vortex-element analysis of impulsively-started

flow about rectangular prisms and pointed out emphatically that other than

numerical experiments, there is no mechanical system which is capable of

generating a truly impulsive flow. In fact, efforts to generate impulsive or

uniformly-accelerated flow at high Reynolds numbers may be hampered by

the generation of compression and rarefaction waves and regions of intense

cavitation (in liquids).

A finite difference analysis of the Navier-Stokes equations for a

sinusoidally-oscillating ambient flow about a circular cylinder at K (Keulegan-

Carpenter Number) = UmT/D = 5 (Re = 1000) and K = 7 (Re = 700) has been

attempted by Baba & Miyata (1987). Their results have shown that the

calculations can be carried out only for short times (less than two cycles of

flow oscillation) with a non-super computer. Murashige, Hinatsu and

Kinoshita (1989) have used a similar method to analyze three cases (K = 5, 7,

and 10) at higher Reynolds numbers around 104. The flow was perturbed by

artificial means to trigger an asymmetry. At K = 10, a transverse vortex street

appeared, ip agreement with experimental observations. Mostafa (1987),

using multi-discrete vortices (with core), simulated the sinusoidally

oscillating flow about a circular cylinder and the decelerating flow about

cambered plates. His calculations for K = 12 have reproduced correctly and for

the first time the transverse vortex street observed experimentally. However,

the calculated forces were somewhat larger than those measured. The

numerical simulation of steady flow past a circular cylinder undergoing in-
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line and/or transverse oscillations through the use of two-dimensional

unsteady Navier-Stokes equations was undertaken by Lecointe et al. (1987) for

relatively small amplitudes (A/D = 0.13). Justesen (1991) recently presented

results obtained from a numerical solution to a stream function-vorticity

formulation of the Navier-Stokes equations for the flow around a circular

cylinder in planar oscillating flow at small Keulegan-Carpenter numbers in

the subcritical Reynolds number range. Justesen introduced a straining

parameter "a" in order to better resolve the large gradients near the cylinder

surface. This is in addition to the logarithmic straining, commonly used as

part of the transformations, for a better resolution of the gradients near the

body. Evidently, Justesen's transformation for a = 0 defaults to the

logarithmic straining. However, "a" becomes another disposable parameter,

dependent on at least K and Re. Justesen had to choose judiciously the value

of the straining parameter for each K in order achieve drag and inertia

coefficients in satisfactory agreement with those obtained experimentally. A

systematic numerical variation of the governing parameters for an arbitrary

U(t) is extremely difficult.
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III. NUMERICAL REPRESENTATION

A. COMPUTATIONAL METHOD

Here only a brief description of the computational method is presented.

A more in depth description is given by Wang (1989).

The fluid is assumed to be two-dimensional, incompressible and viscous.

The governing equations for the solution are the Navier-Stokes equations,

with the stream function and the vorticity as independent variables. To

achieve a higher density of mesh points near the cylinder surface, the

computational domain is transformed from the physical plane (polar

coordinates, see Fig. 1) to a rectangular plane (Fig. 2). In the rectangular plane,

the mesh is maintained at a uniform grid spacing. It is necessary to have

more mesh points closer to the cylinder surface because in this region the

gradients of both the vorticity and the stream function are the largest.

A third-order in time, second-order in space, three-level predictor-

corrector finite-difference scheme is used to solve the vorticity-transport

equation. A Fast Poisson Solver based on the High Order Difference

approximation with Identity Expansion (HODIE) and the Fast Fourier

Transformation (FFT) provided by the IMSL mathematics library is used to

solve for the stream function.

The unsteady Navier-Stokes equations in the polar coordinates, as

defined by the vorticity transport equation and the vorticity/stream-function

equation are,
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a 0 ) 1 a ( a a1) -2 t a w =i 2 O
Dt r (1)

and

V2W=o (2)

where

V2 a2  1 a 1 a2

r 3a" r2 o 02  (3)

c and W are the vorticity and the stream function, v is the kinematic viscosity,

t is the time and, r and 0 are polar coordinates directions (see Figure 1). The

velocity components in the r and 0 directions are defined by

U = -- a V- a
r aM and ar (4)

The boundary conditions for the physical problem are:

(1) no slip and zero normal velocity on the surface of the cylinder

W=2--=0 on r=Rr (5)

and (2) the potential flow at infinity is defined as

= U(r- R)sin0
r (6)

and

(o=O atr=o

where U is the external flow and R is the radius of the cylinder.
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The coordinate transformations required to go from the phybical domain

to the computational domain are:

r=Rexp(a ) and 0=aij (7)

where R is the radius of the cylinder and 'a' is a transformation parameter.

The transformation of the non-dimensionalized vorticity-stream

function equations and their finite difference form through the use of the

central difference approximation for vorticity and a two-step, three-level,

predictor-corrector scheme, with a third order accuracy in time, are described

in detail in Wang (1989) and in Fredrickson (1990) and will not be repeated

here.

B. CALCULATION OF THE FORCE COEFFICIENTS

The in-line and transverse force coefficients are determined from the

combined contributions of the shear and pressure forces acting on the

cylinder. The viscous forces are calculated from Ts= p(o. The total in-line

force then reduces to

FIL = -2 pscos(0)Rd0- J0 o sin(o)RdO (8)

and the total lift force as

2n 27cFL =-o pssin(0)Rd0-f 0 g ocos(o)Rd0 (9)
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After dividing the in-line and the lift-force equations by (0.5 pU 2 D) and

defining

PS2(ps - p.)- Pe

(10)

the force coefficients reduce to

1 2n 2~ 2n snc)d
CI =-J 0 s fcos(0)Rd0-f-Jg-(5sin(o)Rd0

2 Re(11)

and

1 2n 2 -2n
CL =-f 0 Psin(0)Rd0- -J0 i46 cos(o)Rd0

2 Re (12)

The pressure coefficient is determined from the Navier-Stokes equations

in terms of dimensionless vorticity. Once integrated with respect to 0, one

has

Ps(O)= Ps(0)+ 4 2 ( dO
Re foa)_ (13)

Equation (13) is substituted into equations (11) and (12) to determine the

numerical scheme for the in-line and transverse force coefficients,

2 2nf[ 0(3") dOl cos(0)+-6sin(0)d0I dO

CIL = e 0 - r=J (14)

11



and

C 22c [0 3)r=ld]sin(O) + cos(O)d0O (15)

The radial derivative of the vorticity on the surfr-ce of the cylinder,

appearing in Equations (14) and (15), is determined through the use of discrete

pointwise approximations of various orders, ranging from second to tenth

order. For a second order approximation, one has

(i i = - 3oJi + 4(oi+1 - °'i+2 + O(A42) (16)

DY Yr=1 2A

For higher order polynomials Equation (16) may be written as

)i = A i + B~i+l + C(i+2 + Doi+3 + E i+4 ........+
1'*J1= A +Bi 1 ++O(A~ n ) (17)

in which the coefficients A -K are given in Table 1 below.
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Table 1: Coefficients of the Polynomial in Eq. (17)

n=2 n=4 n=6 n=8 n=10

A -3/2 -25/12 -49/20 -761/280 -738112520

B 2 4 6 8 10

C -1/2 -3 -15/2 -14 -45/2

D 4/3 20/3 563 40

E -1/4 -15/4 -35/2 -105/2

F 6/5 56/5 252/5

G -1/6 -14/3 -35

H 8/7 120/7

1 -1/8 -45/8

J 10/9

K -1/10
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C. CALCULATION OF THE DRAG AND INERTIA COEFFICIENTS

If one were to associate the total force with a velocity-square-dependent

drag force and an acceleration-dependent inertial force then the coefficient

associated with the latter may be interpreted as some measure of the added

mass. But one must bare in mind that such a decomposition is far from being

unique.

It has been customary to express the fluid force acting on a body moving

in a fluid otherwise at rest as

F(t) = 1-pCu Ap[{(U o + U(t)}{(U o + U(t)l +pk! V dU(t)
2 d{ 1 dt (18)

where Uo represents the steady velocity; U(t), the time-dependent

oscillations; Cu , the Fourier-averaged drag coefficient and ku , the Fourier-

averaged added-mass coefficient. It is customary to use an inertia coefficient
Cm for a fluid in motion about a body at rest through the use of Cm = 1 + k3.

1]

The Fourier averages of the drag and added-mass coefficients over a

period of T may be calculated by multiplying both sides of Equation (8) once

with U(t) and once with dU/dt to yield

T

2J F(t)U(t)dt

S T 0 (19)
pApJ{(Uo +U(t)}I{(Uo + U(t)}U(t)dt

0
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and

T dU(t)

fJF(t)-dt d
(Cm -1) = ku 0 (20)11 _ T 2

pVf[dU(t)/dt ]2dt

0

which may be evaluated readily provided that sufficiently reliable data are

available for F(t), Uo, U(t), and dU(t)/dt.

1. Governing Parameters

A simple dimensional analysis of the flow under consideration

shows that the time-averaged force coefficients (CI and ku. ) are functions of

a relative amplitude or Keulegan-Carpenter number, Mach number,

Reynolds number, and a parameter involving Uo (e.g., UoT/D or

Uo/[U(t)]max). There are numerous possibilities regarding the definitions of

the relative amplitude or Keulegan-Carpenter number and the Reynolds

number. The purpose of the search for a more suitable Keulegan-Carpenter

number and/or Reynolds number is to enhance the correlation of the data to

reduce the number of the governing parameters, possibly eliminating UoT/D

as an independent parameter. The list of possible Reynolds numbers and

Keulegan-Carpenter numbers is long and will not be given here. Suffice it to

note that the two force-coefficients for the flow about a cylinder may be

written as

d= fi(K,Re,VK) (21)
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or as

d=fi (K+, Re+,VK) (22)
ku

in which

K UmTD ,Re =UmD/v , VK = UT/D

K+ K(1 + JofUm) K+ UoTD

Re+ Re(1 + UdfUm) =Re + U0 D/v (23)
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IV. DISCUSSION OF RESULTS

A. INTRODUCTION

The numerical experiments were carried out through the use of a VAX-

2000, a VAX-3520, a CRAY Supercomputer and the IMSL library. The results

will be discussed in terms of impulsively-started flows, non-impulsively

started flows, oscillating flows, and co-existing flows (oscillation plus current),

following a brief description of their general behavior.

The extensive literature that exists on unsteady flows about cylinders has

either concentrated on the initial symmetric state oi on the asymmetric late

time vortex shedding. However, no systematic attempt was made to

determine the upper limit of the early stages, the upper and lower limits of

the intermediate indeterminable state, or the lower limit of the quasi-steady-

state, in terms of the parameters characterizing the artificial disturbance

imposed on the flow. It has long been recognized that the symmetric state

becomes increasingly unstable and the flow sooner or later bifurcates into an

asymmetric state. This bifurcation is not an instantaneous event but takes

place rather gradually even if the disturbance is imposed suddenly. However,

the interesting feature of all the numerical calculations is that the numerical

noise and truncation errors are ever present and continue to work on the

propensity of the flow to become naturally asymmetrical even though the

results are far from being natural. Had one been able to devise a sufficiently

accurate numerical scheme and a greater-precision computer, one could

maintain a longer symmetric state. Evidently, the onset of asymmetry in
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calculations depends on the characteristics of the physical disturbances. The

two types of disturbances used can never be made identical, but they may be

made to mimic each other. Thus, it is the hope of the numerical

experimenter that the early stages of an impulsively started flow is relatively

immune to truncation errors and the imposed, reasonable, artificial

perturbation can, therefore, be expected to compare with the physical

experiments. However, once the flow becomes asymmetrical the period of

transition into a quasi-steady-state depends, to varying degrees of intensity, on

the parameters characterizing the numerical disturbance. For small

perturbations, the quasi-steady-state may eventually be arrived at smoothly

without the in-line and transverse force coefficients overshooting first and

then reducing to their terminal values. The rather unfortunate aspect of the

numerical dilemma is that the quasi-steady-state is not just a function of the

characteristics of the perturbation. If it were, one would have conducted a

series of numerical experiments, arrived at a fairly stable state, and would

have concluded that the flow no longer remembers how it was started and

how it ever became asymmetrical. Even though this is the ultimate goal of

the numerical experiments, the effects of the unavoidable truncation errors

are ubiquitous and continue to influence, to varying degrees of importance,

the entire history of the computed flow. At lower Reynolds numbers the

history effects are relatively smaller and the flow remains essentially at a

quasi-steady state once it arrives there.

It is in view of the realization of the foregoing facts that the results

reported herein dealt with extensive sensitivity calculations to determine the

effects of the type and intensity of the perturbations, the grid size, the time
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increment, and the effect of the outer boundary of the computational domain

on the numerical experiments.

B. CHARACTERIZATION OF PERTURBATIONS

The problem associated with the assignment of a perturbation is not the

making of suitable choices among a limited number of equally sound

characterizing parameters, but rather the difficulty of choosing a reasonable

one from among an infinite set of perturbations and applying it at the right

time interval. Faced with this problem, previous investigators used many

types of artificial disturbances. In fact, there are as many original disturbances

as there are original papers. In the present study, sinusoidal disturbances of

varying intensities were used. The first application of such a disturbance was

to change the direction of the ambient flow (one half a degree in either

direction) one full sinusoidal cycle in the range of 3 < S/R <5 where S/R is

the relative displacement of the fluid. The amplitude of the sine wave was

the only free parameter. It is worth noting that the this type of disturbance

gradually returns the perturbed quantity to its initial state (Fredrickson 1990).

This type of disturbance was desired for the present model but required a long

time to induce vortex shedding. Increasing the amplitude of the change of

flow direction was not desirable. As Fredrickson showed, the resulting flow

was greatly affected by the perturbation strength. A perturbation of the same

form was used but introduced in the range 3 < S/R < 13 for a duration of

A(S/R) = 10. Part of the reason for this selection was that it introduces an

oscillation frequency that corresponds to a Strouhal number of 0.20, a

frequency which is much closer to the natural frequency of the flow. Figure 3

shows, for example, that the disturbance introduced over A(S/R) = 10, as
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described above, induces vortex shedding sooner than the one introduced

over A(S/R) = 2 with an intensity ten times larger. Figure 4 shows the effect

of the change of amplitude of the disturbance and the change of duration of

the disturbance on the lift coefficient. Clearly, both parameters have

interesting influences on the lift coefficient . A disturbance of small

amplitude applied over a longer range (3 < S/R < 13) has far greater effect on

the evolution of the lift than a disturbance ten times the amplitude applied

over a shorter period (3 < S/R < 5). Finally, a very large disturbance applied

over the longer period precipitates the lift buildup but the resulting

amplitude of oscillation is nearly identical to that obtained with the smaller

disturbance. It is because of these reasons that a disturbance of amplitude 0.5

degrees was introduced over the range 3 < S/R < 13 throughout the

calculations reported herein unless otherwise noted.

C. IMPULSIVE/NON-IMPULSIVE FLOW

Among the numerous theoretical, numerical, and experimental

investigations, "impulsively-started" steady flow about a circular cylinder has

occupied a prominent place partly because of its intrinsic interest towards the

understanding of the evolution of separation, vortex formation, and growth,

partly because of its practical importance in various aerodynamic applications

(e.g., the impulsive flow analogy, flow about missiles, dynamic stall), and

partly because it provided the most fundamental case for the comparison and

validation of various numerical methods and codes. However, neither

"impulsive start" nor "impulsive stop" is physically realizable. The flow

must be accelerated from rest to a constant velocity or decelerated from a

constant velocity to rest, or to another velocity, in a prescribed manner. This
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fact gives rise to a series of new questions such as: (i) What is the effect of the

initial acceleration, prior to the establishment of a steady uniform flow, on

the characteristics of the resulting time-dependent flow? (ii) Are there critical

values of the governing parameters above or below which the flow may be

regarded as almost impulsively-started? (iii) How does the rate of

accumulation of vorticity, as well as its cross-wake transfer, depend on the

initial history of the motion? The purpose of this section is to explore some

of these questions through the use of a series of numerical experiments. In

doing so, however, one needs to introduce some new parameters such as

Ap = D (dU/dt)/V 2  (24)

or

Apn = D n (dnU/dtn)/V n + l  (25)

in order to account for the initial history of the fluid motion. The other

parameters are the Reynolds number Re = VD/v and the relative

displacement of the ambient flow, given by

S/R = 0.5 (dU/dt) t 2 /R = 0.5 V t 2 / (Rtv) for t < tv (26)

and

S/R = 0.5 (V tv/R) + (t - tv) V/R for t > tv (27)

and

(S/R)v = Q = 0.5 (dU/dt) tv/R = 0.5 V t /(R) (28)

where U is the time-dependent velocity in the interval (0 < t < tv), V is the

constant velocity arrived at the end of the constant acceleration period, R is

the radius of the cylinder, t is the time, tv is the duration of the acceleration

21



period, and Ql = (S/R)v is the relative displacement of the fluid at the end of

the acceleration period. A systematic physical and numerical

experimentation for an arbitrary U(t) is extremely difficult in view of the

parameters involved. Thus, to make progress one must begin with the

simplest unsteadiness, namely with constant dU/dt, so as to be able to

incorporate progressively more complex variations of velocity with time.

As it will be discussed in detail later, there are important flow features

between the impulsively and non-impulsively started flows. It is because of

this reason that first the characteristics of impulsively-started flows will be

discussed. Subsequently, the case of non-impulsively-started flow will be

taken up. Finally, the limits of the governing parameters will be determined

through a comparison of the corresponding pressure, vorticity, etc. plots.

D. IMPULSIVELY-STARTED FLOW

Among the numerous calculations performed, only two representative

impulsive-flow situations will be discussed in some detail. Figures 5 through

7 show the drag coefficient, lift coefficient, and the streaklines for Ql = 0.10, Re

= 1,000, At = 0.02, and A4 = 1/64. A drag overshoot occurs at about S/R = 3 and

is followed by a rapid decrease in Cd. Even though, the drag oscillations in

the interval 40 < S/R < 60 are representative of regular vortex shedding, the

numerical instabilities and truncation errors take over at times larger than

about 60 and the drag oscillations degenerate into unrealistic oscillations.

Evidently, the use of a stream function/vorticity formulation for use at such

relatively high Reynolds numbers is not quite warranted. In fact, it is to

delineate the regions of stability of the numerical code that the calculations

have been performed at such high Reynolds numbers.
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In pursuit of understanding the limitations of the CODE , the calculations

have been performed at three other Reynolds numbers. Figures 8 through 10

show the comparative evolution of the drag and lift coefficients for suitable

relative motions. The drag coefficient for Re = 500, 750, and 1,000 are fairly

similar and all exhibit secondary vortices. However, the case of Re = 250 is

significantly different and the streamlines do not show secondary vortices.

The reasons for this are not yet clear. The lift coefficient shows nearly similar

behavior with small phase differences, as one would expect. Finally, Figures

11 (for 0 < S/R < 100) and 12 (for 0 < S/R < 5) show the effect of the order of

the polynomial used in the calculation of the vorticity gradient on the wall.

E. NON-IMPULSIVELY-STARTED FLOW

These deal primarily with flows which are subjected to constant

acceleration for a prescribed distance of 0 and then maintained at constant

velocity throughout the remainder of the calculations. A detailed

experimental investigation of such flows has been recently given by Sarpkaya

(1990).

Figures 13-17 show typical in-line force, pressure distribution,

streamlines, and the vorticity distribution for 0 = 1 and Re = 1,000. Figure 15

shows the development of the primary and the secondary vortices at S/R = 3.

Similar results are shown in Figs. 18-24 for 0 = 2 at representative S/R

values. The comparison of Figs. 16, 20 and 22 show that the larger the Q, the

larger the S/R at which the secondary vortices grow. Figures 25-32 and the

Figures 33-37 show the evolution of non-impulsively started flows for a = 3

and 0 = 10 respectively. It is particularly noteworthy that the secondary

vortices which appear at S/R = 10 (Fig. 35, the end of the acceleration period),
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disappear shortly thereafter at S/R = 10.2 (Fig. 36) due to the instant transition

of flow to a constant velocity and then reappear again at S/R = 11.6 (Fig. 37).

In general, the fundamental character of the non-impulsively-started

flows may be best described in terms of the evolution of the secondary

vortices. Although much of the same patterns are observed in the impulsive

cases, the said phenomenon was studied much more extensively in the non-

impulsive regime. As noted earlier, the time to the development of

secondary vortices is longer and not so sudden. Figures 30 and 31, for

example, shows the development of the streamlines just at the time the

secondary vortices begin to appear. The streamlines before secondary vortex

development are more sylph like behind the cylinder and bulge as the

vorticity grows stronger. The secondary vortices are driven to form between

the cylinder and the primary vortices. Once the initial acceleration is

completed the secondary vortices are no longer impeded by the adverse

pressure gradient and rapidly grow to a maximum size that corresponds to

that seen in the numerical calculations of the post acceleration drag peak.

This peak is not strong enough to be seen in the experiments and is probably

unimportant other than for the understanding of the growth of a vortex

subjected to acceleration for a specific period of time.

The appearance and disappearance of secondary vortices in Figures 35-37

is not surprising as one would expect them to appear sooner or later provided

that the acceleration period is long enough for a given rate of acceleration.

Although not pursued further, it is expected that for a sufficiently slow

acceleration the secondary vortices would not at all appear (even disappear)

after the constant velocity is reached. The disappearance of the secondary
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vortices is attributable to the sudden pressure change behind the cylinder

which drives the primary vortices back towards the cylinder increasing their

strength and decreasing the secondary vortex strength.

The form of the drag overshoot is related to the development of the

secondary vortices behind the cylinder. A careful examination of Figures 13-

37 shows that even though a second drag overshoot occurs in each case, it

becomes less perceptible at lower acceleration rates (higher 0i).

The Figures 13-32 also show that the impulsive versus non-impulsive

case may be separated by an Q value between 2 and 3. This is slightly lower

than the value of 3.7 identified by Sarpkaya (1990) on the basis of his

experiments at much higher Reynolds numbers. The pressure plots (see Figs.

19 and 26) show marked differences between these two values which may

correlate with the drag overshoot in the experimental results. The plots at Q

= 3 show that the form of the pressure is well established before the

acceleration has ended and changes little thereafter. This is not the case for Q

= 2.0 where there is a larger change in the form of the wall pressure after a

constant velocity is reached. Figures 15, 20 and 28 show plots of the vorticity

for 0 of 1.0, 2.0 and 3.0 at the end of the acceleration point confirm that the

secondary vortices have developed much more for Q = 3.0 but hardly at all for

the other two cases. Although these values do not correlate exactly with the

experiments, their characteristic behavior seems to be the same. It is also

interesting to note that the second drag overshoot is always accompanied by

the first appearance of the secondary vortices in the streamline plots. This is

probably purely coincidental as the vorticity plots exhibit full development by

this stage and the vorticity is the actual contributory element to the drag. The
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streamline plots merely show that the vorticity has become strong enough to

be perceptible. Previously, it was thought that the post acceleration drag

overshoot occurred as a result of the accumulation of excess vorticity in the

primary vortices and the subsequent annihilation of vorticity in the

overlapping regions of vorticity. The figures noted above suggest that not

only the rapid accumulation of vorticity but also the evolution of the

secondary vortices affect the actual drag overshoot. The overshoot occurring

at higher 0 values in the numerical experiments are probably over shadowed

by other phenomena in the experiments, particularly when the vortex

shedding commences immediately after the acceleration is removed. For

higher acceleration rates (lower Q), the flow in physical experiments remains

nearly symmetrical for a longer time period, allowing the secondary vortices

to play their _art. For the lower acceleration rates, however, the onset of

vortex shedding destroys the secondary vortices before they can affect the

evolution of the fluid resistance. The post acceleration drag overshoot for the

slower accelerations in the numerical results is fairly small and is not likely to

have much of an effect even if the experimental flow remained nearly

symmetric.

F. OSCILLATING FLOWS

The efforts to arrive at coherent descriptions of the interactions between

oceans and the structures inserted therein have a long history. The past two

decades have seen an explosion of interest in the broad subject of ocean

hydrodynamics. As a result of this activity, there is arising an improved and

more realistic understanding of the physical characteristics of some time-

dependent flows about bluff bodies and their mathematical formulation. On
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the one hand attention has been focussed on controlled laboratory

experiments which allow for the understanding of the separate effects of the

governing and influencing parameters, and on the other hand on

mathematical and numerical methods which allow for the nearly exact

solution of some wave loading situations.

The hydrodynamic loading situations which are well understood are

those which do not involve flow separation. Thus, they are amenable to

nearly exact analytical treatment. These concern primarily the determination

of the fluid forces on large objects in the diffraction regime where the

characteristic dimension of the body relative to the wave length is larger than

about 0.2. The use of various numerical techniques is sufficient to predict

accurately the forces and moments acting on the body, provided that the

viscous effects and the effects of separation for bodies with sharp edges are

ignored as secondary.

The understanding of the fluid-structure interactions which involve

extensive flow separation and dependence on numerous parameters such as

Reynolds number, Keulegan-Carpenter number, relative roughness, relative

motion of the body, proximity effects, hydroelastic response, etc. is far from

complete (Sarpkaya & Isaacson 1981). There are several reasons for this. First,

although the physical laws governing the motion (the Navier-Stokes

equations) are well known, valid approximations necessary for numerical

and physical model studies are still unknown. Even the unidirectional steady

flow about a bluff body remains theoretically unresolved. Much of our

understanding of vortex shedding behind bluff bodies came from steady-flow

experiments, highly idealized models, and limited numerical solutions. Most
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of the numerical studies based on the use of the Navier-Stokes equations and

some suitable spatial and temporal differencing schemes are limited, out of

necessity, to low Reynolds number flows. A second reason why progress has

been slow is that the bluff body problems involving wake return are an order

of magnitude more complex and there has been only a handful of limited

applications of the methods based on Navier-Stokes equations, as noted in

the introduction.

The formation of a wake gives rise not only to a form drag, as it would be

the case if the motion were steady, but also to significant changes in the

inertial forces. The velocity-dependent form drag is not the same as that for

the steady flow of a viscous fluid, and the acceleration-dependent inertial

resistance is not the same as that for an unseparated unsteady flow of an

inviscid fluid. In other words, the drag and inertial forces are interdependent

as well as time-dependent. These effects are further compounded by the

diffusion and decay of vortices and by the three-dimensional nature of

vorticity due to turbulent mixing, finite spanwise coherence, and the random

nature of the vortices (which give rise to cycle-to-cycle variations and

numerous flow modes even under controlled laboratory conditions). The

stronger and better correlated the returning vortices, the sharper and more

pronounced the changes are in pressure distribution on the body and in the

integrated quantities such as the lift, drag, and inertia coefficients.

Figures 38 and 39 show dramatically the large changes that can occur over

a very short time in a sinusoidally oscillating flow. The perturbation was

applied during the first cycle of the oscillation. The remaining parameters
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were K = 1.5, Re = 450, and 1 = 300. Figure 38 shows the streamlines at t/T = 4

and Fig. 39, at t/T = 4.004.

Figures 40 through 43 show the total streamlines for K = 3 and 1 = 196, at

times t/T = 6.0, 6.25, 6.5, and 6.75. Figures 44 through 47 show, for the same

parameters and times, the differential streamlines, as seen by an observer

moving with the cylinder, (i.e., the difference between the total stream

function and the ambient potential function, corresponding to the purely

sinusoidal flow). Even though it is not quite obvious, the flow at this

particular K value becomes eventually asymmetrical.

Figures 48 through 51 show the total stream function values for K = 4 and

= 196, at times t/T = 6.0, 6.25, 6.5, and 6.75, and the Figures 52-55 show the

differential stream function values at the corresponding times. The last eight

figures clearly show that the flow becomes asymmetrical and the vortex

trajectories exhibit an exceedingly complex structure. Thus, it is clear that one

would not be able to arrive at a simple description of the time-dependent flow

and of the forces exerted on the body. It is also equally clear that an empirical

equation, such as the so-called "Morison's equation" [see, Eq. (18) and

Sarpkaya & Isaacson 1981] cannot adequately represent the measured or the

calculated force in terms of two time-averaged coefficients. The fact that it

comes close to doing so, at least in certain ranges of the Keulegan-Carpenter

number, is a remarkable testimony to the strong influences of the drag and

inertia components of the force, when one or the other tends to dominate the

flow.

Figure 56a shows a comparison of the instantaneous in-line force for K =

1.5, Re = 450, and 13 = 300 for various orders of polynomial used to calculate
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the vorticity gradient on the wall. It is clear that the force curves are quite

similar and the order of the polynomial does not materially affect the

amplitude of the total force. However, a closer perusal of Fig. 56a and a close-

up plot of Fig. 56b show that the phase of the force relative to the ambient

flow is shifted by a few degrees. This, seemingly insignificant phase shift

becomes exceedingly important if one wishes to determine the parts of the

force which may be attributed to the velocity-square dependent drag and the

acceleration-dependent inertia [see Eqs. (19) and (20)]. This matter has been

explored in greater depth through the use of orders of polynomial varying

from 2 to 10. Table 2 shows the Cd and Cm values for K = 1.5, and I = 300 for

A4 = 1/64 and A4 = 1/128 for various values of the exponent n.

Table 2 Dependence of Cd and Cm on the Wall-Vorticity Gradient

At = 1/64 A = 1/128

Order of polynomial Cd Cm Cd Cm

2 5.33 1.92 2.68 2.07

4 2.86 2.25 1.44 2.13

6 1.55 2.27 1.15 2.12

8 1.30 2.23 1.21 2.12

10 1.50 2.20 1.23 2.12

Experimental Values: Cd = 1.15 and Cm = 2.12

Table 2 shows that the drag and inertia coefficients may be made to agree

with the experimental values through the judicious selection of the exponent

n and the node spacing. However, this should not be taken to mean that the
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same exponent will yield equally satisfactory agreement between the

numerical and physical experiments. It turns out that one should seek other

values of the exponent as in the case of Justesen (1991) (other values of the

stretching parameter) to match the measured and calculated values of the

drag and inertia coefficients. However, it is of some importance to note that

the desire to separate the total in-line force into a drag and inertial force

components is that of the investigator and not that of nature. Thus, small

phase differences stemming from the influence of the exponent should not be

taken to mean that the total force as a function of time will significantly

depend on the exponent. In fact, as noted above, the calculated time-

dependent force is quite similar for all values of the exponent. Thus, the

results show that regardless of the method of discretization and other care a

numerical scheme should not be expected to resolve all aspects of a given

problem to the same degree of accuracy. Furthermore, the kind of accuracy

depicted in Table 2 should not be expected and is not warranted through the

use of a high-order polynomial since the rest of the discretization is accurate

only to second order.

In order to test the power of precision of the use of the eight-order

exponent obtained in the previous case, shown in Table 2, calculations have

been performed at other K values. Figure 57a shows that at relatively small

Keulegan-Carpenter numbers where the force is inertia-dominated, the

inertia coefficient Cm is not significantly affected by the order of the

polynomial. However, the drag coefficient is affected dramatically.

Furthermore, what was an ideal value as an exponent for the K = 1.5 case

turns out to be rather unsatisfactory for the other values of K (2, 3, and 4). In
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fact Table 3 shows that the experimental values of the drag and inertia

coefficients are bracketed by the values of n = 2 and n= 8.

Table 3 Dependence of Cd and Cm on the Exponent n.

K=1 K=2 K=3 K=4

Cd (Theory*) 1.95 0.95 0.70
Cd (Exper.+) 1.95 1.5 1.55

Cd (n=2) 5.96 3.3 2.56 2.26
Cd (n=8) 2.18 0.82 0.053 0.32

Cm (Theory*) 2.16 2.16 2.16
Cm (Exper.+) 2.18 2.11 2.0

Cm (n=8) 2.05 2.01 1.9 1.74
Cm (n=8) 2.19 2.19 2.11 1.98

*Theory by Wang (1968), +Experiments (Bearman et al. 1985).

Thus, it is dear that the numerical schemes are not reliable enough to predict

the precise phase shift between the ambient velocity and the maximum force.

However, they are very reliable or robust enough as far as the total force

coefficient is concerned. This result has been somewhat anticipated in the

discussion of the previous works in connection with the numerical work
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carried out by Justesen (1991) and his use of the so-called stretching parameter

"a.1

Figure 57b shows the amplitude of the time-dependent force for K = 2, 3,

and 4. Apparently, the total-force coefficient does not measurably depend on

the exponent, as noted earlier.

Figures 58a through 59b represent a study on the effect of the amplitudc of

disturbance on the in-line and transverse forces. Figures 58a and 58b show

that a ten fold increase in the amplitude of the disturbance has very little

influence on the said forces. Figure 59a also shows that the in-line force is

practically unaffected but, as Fig. 59b shows, the transverse force undergoes

amplitude and frequency modulations, dependent on the disturbance,

primarily due to vortex shedding at higher K values.

Figure 60, obtainable only through the use of a super-computer because of

time requirements, is an interesting comparison of the in-line forces

calculated for K = 1 and [3 = 196 using two significantly different time

intervals: At = 0.002 and At = 0.0001. Clearly, there is no perceptible difference

between the two calculations. The drag and inertia coefficients for the two

calculations are nearly identical, showing once again, at least for one K value,

that they are more strongly influenced by the vorticity gradient on the wall

than by the time increment and that the smallness of the time increment

does not necessarily improve the drag coefficient or the vorticity gradient. A

similar comparison for K = 4 and 0 = 196 is shown in Figs. 61a through 67

using At = 0.0005 and At = 0.002. It should be noted that the in-line force

exhibits not only a mean Strouhal frequency but also its higher order

harmonics. This may be due to the actual behavior of the flow at the stated K
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and Re values or a consequence of the numerical instability, devoid of physics

of the phenomenon. In any case, it demonstrates the consequences of the use

of a supercomputer to either discover new phenomena or help define the

limits of a model.

An additional study was undertaken to determine the onset of separation

to the extent possible. Originally, it was surmised on the basis of experiments

that the separation in sinusoidally oscillating flow sets in when K is equal to

about 1.5. The recent numerical work of Justesen (1991) has shown that the

separation is present and occurs at all K values. To this end, calculations were

carried out with K = 1, 3 = 196, At = 0.002, and A = 1/64. The resulting

relative streamlines are shown in Figs. 68 through 72 at suitable time

intervals. Figure 68 shows the asymmetry of the flow and the development

of two separation regions. In Fig. 70, the separation regions have shifted to

the other half of the cylinder. However, the most interesting feature of these

calculations is that the flow continues to evolve even after as many as seven

cycles. For example, at t/T = 8, a Kelvin-oval like vortex pattern evolves. If

the calculations were pursued to much larger times, additional regions of

separation and stagnation points within the body of the fluid may have been

observed. In any case, the fact which emerges from this study is that the

lower limit of K observed experimentally is not the lowest K at which

separation commences. It seems that K = 1.5 limit is an artifact of the

experiments and most likely that of the surface tension and flow

visualization techniques. Even though the calculations have not been carried

out at K values smaller than one, there is every reason to believe that

separation will occur at any K. This remains to be investigated in the future.
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G. OSCILLATING FLOW WITH CURRENT

The in-line oscillations of a cylinder in uniform flow has ben the subject

of intense interest in recent years [see, e.g., Sarpkaya & Isaacson (1981) and

Sarpkaya & Storm (1985)] in connection with the understanding of the

behavior of hot-wire anemometers and the fluid loading of structures

subjected to gusts and other types of unsteady flows. Evidently, the

determination of the forces acting on a cylinder undergoing harmonic in-line

oscillations is just as important as the understanding of its kinematics. The

fact that there is a strong relationship between vortex shedding and the drag

and inertia coefficients, one would anticipate that the biassing of the shedding

of the vortices by the current will cause profound changes in both the drag

and inertia coefficients. relative to their no-current values.

Numerical experiments have been carried out with K = 4, j = 196, Re =

784, At = 0.002 and various values of Vr = Uo/Um where U =U 0 +Umsin(2nt/T)

and U0 is the collinear steady current velocity. Evidently, this is a rather

limited exploration of a highly complex problem and requires much more

numerical and experimental work. The purpose of the present calculations

was not to provide a detailed comparison between the measured and

calculated forces but rather to attempt to establish a relationship between the

shedding of vortices and the relative magnitudes of the current. The

particular value of K chosen for the calculations (K = 4) was one for which

separation was known to occur and for which a few experimental data points

were available at comparable 0, Re, and Vr values.

Figures 73 through 94 show the evolution of the lift and in-line force

coefficients as a function of t/T and the streaklines at t/T = 8 for Vr = 0.4 (Figs.
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73-75), for Vr = 0.6 (Figs. 76-78), for Vr = 0.8 (Figs. 79-88), for Vr = 1.0 (Figs. 89-

91), and for V, = 1.1 (Figs. 92-94).

The streaklines show that the wakes are comprised of three rows of

heterostrophic vortices. They differ only in detail from one Vr to another. At

lower Vr values, where the sinusoidal oscillation is relatively important, the

shedding of the vortex couples become more and more alternating. One pair

goes to one side of the cylinder, next pair goes to the central street, and the

third pair goes to the other side of the street. Then the events repeat

themselves. At higher Vr values however, (see Figs. 81-88) the vortex pairs

on both sides of the cylinder as well as those along the axis come into

existence almost simultaneously. At still larger values of Vr (see Figs. 91 and

94 at Vr = 1 and 1.1, respectively) the flow is dominated increasingly by the

current. This leads to the alternate shedding of the vortex pairs which

become situated along two off-axis lines. The central vortex pairs become

very weak and fairly stretched out. The vortex pairs rotate and orient

themselves as if they were going to be part of an ordinary Karman vortex

street (see Fig. 91). Further downstream, the wake looses all traces of the

oscillation and resembles that one created by a steady stream past a circular

cylinder. The lift coefficient plots show the increasing asymmetry of the wake

with Vr. At lower Vr values the in-line force coefficient remains essentially

constant and periodic. At larger Vr values, however, the in-line force

becomes not only asymmetrical but also highly dependent on the particular

cycle under consideration. It appears that many more cycles of flow will have

to be calculated to arrive at quasi-steady values of the in-line and transverse

force coefficients.
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Figures 95 through 97 show the maximum in-line force, drag, and inertia

coefficients as a function of Vr. The only difference between the Figures 95

and 96 is that the former is calculated using a second order polynomial for the

radial vorticity gradient, and the latter using an eighth order polynomial. A

comparison of the two figures shows that there is very little difference

between the two plots. In other words, the maximum in-line force coefficient

is not sensitive to the order of the polynomial used, as noted earlier in

connection with purely sinusoidal flows. Figure 97 shows a comparison of

the calculated and experimental (Verley 1979) drag and inertia coefficients.

The computed values were based on an eight order polynomial

representation of the radial vorticity gradient. As expected, the inertia

coefficients agree extremely well. As far as the drag coefficients are concerned,

the agreement is not as good but certainly better than expected in view of the

fact that the drag coefficient is dependent on the order of the polynomial used

to calculate the vorticity gradiPnt Nevertheless, the trend of the data is well

predicted. It was possible to carry out extensive numerical experiments to

find the most appropriate value of the exponent n so as to achieve better

agreement between the measured and calculated coefficients. However, this

was deemed to be an unproductive effort since the purpose of the

investigation was not an exercise in coefficient matching but rather the

understanding of the kinematics of the flow and the role played by the

vortices in time dependent flows. It is for this purpose that flow

visualization experiments have been performed and some of the results will

be described below briefly.
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Figures 98 through 102 show the results of the flow visualization

obtained with K = 4 and Vr = 0.8 at times t/T = 8-3/8, 8-4/8, 8-5/8, 8-6/8, and 8-

7/8. The symmetric growth and motion of the vortices are clearly visible.

These figures should be compared with Figures 82-87. The similarities are

rather striking in spite of the fact that P3 was 196 in the calculations and about

600 in the experiments. Figure 101 shows clearly not only the symmetrically

developing vortices but also the heterostophic pairs shed in the previous

cycle.
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V. CONCLUSIONS

The investigation reported here warranted the following conclusions:

1. Even the higher order finite difference formulations of the governing
equations can be solved for only relatively small Reynolds numbers.
This is partly due to stability and computer constraints, and in part
due to the difficulty of specifying appropriate perturbations forcing
the flow to bifurcate into an asymmetric quasi- steady-state.

2. For almost impulsively-started flows the drag overshoot occurs near
S/R=4. For (S/R)v>5, this overshoot is obscured by the effect of
acceleration and continues to increase the drag to values larger than
the drag overshoot at (S/R)v=4.

4. The early stages of the flow, i.e. S/R<15 can be calculated within the
limits of the accuracy of the computational scheme. The results are
essentially independent of the characteristics of the perturbation even
if they were imposed at the start of the motion.

5. The experimentally observed drag overshoot for almost- impulsively
started flow occurs in the range 4<S/R<5, depending on the noise
imposed on the flow at the early stages of the motion.

6. There is a range of S/R values, for both impulsively and non-
impulsively started flows, which is not amenable to correct
numerical simulation. Because this region depends on the
parameters characterizing the perturbations which are unknown and
unknowable in physical experiments.

7. There is a third region of the flow in which the transient state
evolves into a quasi-steady-state. It is assumed, for all intents and
purposes that the flow does not remember how it arrived at the
quasi-steady-state. It is tacitly assumed that the final state does not
depend on the disturbances even though the nonlinear coupling of
the disturbances and truncation errors may lead to somewhat
different steady states.
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8. The numerical experiments with sinusoidally oscillating flows
yielded total force coefficients which were not only highly stable but
also in agreement with those obtained experimentally.

9. The physical and numerical experiments yielded nearly identical;
Inertia coefficients at the corresponding Keulegan-Carpenter numbers

and Reynolds numbers regardless of the order of the polynomial used
to calculate the radial gradient of the vorticity on the wall. However,
the drag coefficient showed strong dependence on the exponent n
because the small variations in phase lead to large changes in the
instantaneous in-line force in the inertia-dominated regime of the
oscillating flow.

10. The numerical experiments with co-existing flows (oscillation plus
steady mean flow) produced extremely interesting flow features. For
relative current velocities less than about one, the vortices shed
nearly symmetrically at each cycle. For relative current velocities
larger than about one, the vortex wake returned to the asymmetric
mode, as is encountered in a regular Karman vortex street.

11. The calculations of resistance in co-existing flows have shown that
the inertia as well as the drag coefficients (using an exponent of n = 8)
for a Keulegan-C arpenter-- A,,_. ,M, A ac- - Jr , -b..7

agreement with those obtained experimentally at the corresponding
relative current velocities.

12. Extensive flow visualization studies yielded vortex patterns in close
agreement with those predicted numerically at the corresponding
relative current velocities.

13. The foregoing numerical experiments could not have been possible
had it not been due to the availability of a VAX-3520 and a CRAY
supercomputer. It is also realized that calculations at higher
Reynolds numbers and for larger numbers of cycles of flow oscillation
will require extremely large CPU times even on a supercomputer.
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Figure 1. Grid in the Physical Domain

41



0

C

C

,,,o

'442

Co
-<

a

-

0 16 82 46 64 60 96 112 128
SURFACE OF CYLINDER (T;)

Figure 2. Grid in the Computational Domain

42



oVo

z
°i

. . , . ..... .... .

w
0'a
0

a 20 40 10 so 100

S/R

Figure 3. CL. versus S/R, Re = 200, -: Aa = 0.5 (S/R = 3-10),

........ Aa =5.0 (S/R = 3-5), -- - Aa = 0.5 (S/R =3-10)

ah

o " ', A 'fill , |-1 , :
, 3 ,, , , - 9,'9

Ze, ,. '1 ~ , - , *' i
S. ' 3 , ; " ' ' 9

-| - 3, * I.
IL. a 9 3 •.**.!ii

0 : ' ' ' "

' , ' a ' ,: .,.
* 3:, :,

200  40 i- -h-'-

u 4. ,, , Re =
9 ' 9,-4____ ,Ig

*, , . ,.
.*M ;. S': - ,

0 20 40 60 60 100
$/H

Figure 4. CL versus S/R, Re = 200, (lines same as in Fig. 3)

43



CA-

2 0l 4 0 4O 0, 10 0
81R

Figure 5. CIL versus S/R, 9 = 0.1, Re =1000, --1/64

z
UJ

LU .

0

0 20 40 O 100
S/R

Figure 6. CL.versus S/R, Q = 0.1, Re = 1000, , = 1/64

44



000*04
'-4

C:

'44

456



UJ

0

0 a10I 20

SIR

Figure 8. CIL versus SiR, Q~ 0.1, - : Re= 250,....... Re= 500,

Re 750 Re =1000

46



LU

0 0

*c 0

0 204 oso 100

SIR

Figure 9. CIL versus SIR, 0 0.1, (lines same as in Fig. 8)

U. IL I l

0o10

ISIR

Figure 10. CL versus SIR,!Q = 0.1, (lines same as in Fig. 8)

47



LU

0
w

020 40 so so 100

Figure 11. CIL versus SiR, 02 0.25, n 2,....... n =4,

-- -:n=6, - :n=8,--- :n'=10

LU

0

Figur 12.CIL versus SIR, fl =0.25, (lines same as in Fig. 11)

48



z
LU

U"
0

0

SIR

Figure 13. CIL versus SIR, Q2 =1, Re =1000, A 1/128

49



Figure 14. Pressure ps around Cylinder versus Time(r), fl 1
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Figure 19. Pressure ps around the Cylinder versus Time~c), 0 2
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Figure 26. Pressure Ps around the Cylinder versus Time(t), fQ 3
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